Back
Home

About Gold
The "Noble" Metal
As appearing in The Gold Nugget, September 1999
by Joseph Miller

[ Two women prospectors with a rocker box ]

Gold is called a "noble" metal (an alchemistic term) because it does not oxidize under ordinary conditions. Its chemical symbol Au is derived from the Latin word "aurum."

In pure form gold has a metallic luster and is sun yellow, but mixtures of other metals, such as silver, copper, nickel, platinum, palladium, tellurium, and iron, with gold create various color hues ranging from silver-white to green and orange-red.

Pure gold is relatively soft--it has about the hardness of a penny. It is the most malleable and ductile of metals. The specific gravity or density of pure gold is 19.3 compared to 14.0 for mercury and 11.4 for lead.

Impure gold, as it commonly occurs in deposits, has a density of 16 to 18, whereas the associated waste rock (gangue) has a density of about 2.5. The difference in density enables gold to be concentrated by gravity and permits the separation of gold from clay, silt, sand, and gravel by various agitating and collecting devices such as the gold pan, rocker, and sluice box.

Mercury (quicksilver) has a chemical affinity for gold. When mercury is added to gold-bearing material, the two metals form an amalgam. Mercury is later separated from amalgam by retorting. Extraction of gold and other precious metals from their ores by treatment with mercury is called amalgamation. Gold dissolves in aqua regia, a mixture of hydrochloric and nitric acids, and in sodium or potassium cyanide. The latter solvent is the basis for the cyanide process that is used to recover gold from low-grade ore.

The degree of purity of native gold, bullion (bars or ingots of unrefined gold), and refined gold is stated in terms of gold content. "Fineness" defines gold content in parts per thousand. For example, a gold nugget containing 885 parts of pure gold and 115 parts of other metals, such as silver and copper, would be considered 885-fine. "Karat" indicates the proportion of solid gold in an alloy based on a total of 24 parts. Thus, 14-karat (14K) gold indicates a composition of 14 parts of gold and 10 parts of other metals. Incidentally, 14K gold is commonly used in jewelry manufacture. "Karat" should not be confused with "carat," a unit of weight used for precious stones.

The basic unit of weight used in dealing with gold is the troy ounce. One troy ounce is equivalent to 20 troy pennyweights. In the jewelry industry, the common unit of measure is the pennyweight (dwt.) which is equivalent to 1.555 grams.

The term "gold-filled" is used to describe articles of jewelry made of base metal which are covered on one or more surfaces with a layer of gold alloy. A quality mark may be used to show the quantity and fineness of the gold alloy. In the United States no article having a gold alloy coating of less than 10-karat fineness may have any quality mark affixed. Lower limits are permitted in some countries.

No article having a gold alloy portion of less than one-twentieth by weight may be marked "gold-filled," but articles may be marked "rolled gold plate" provided the proportional fraction and fineness designations are also shown. Electroplated jewelry items carrying at least 7 millionths of an inch (0.18 micrometers) of gold on significant surfaces may be labeled "electroplate." Plated thicknesses less than this may be marked "gold flashed" or "gold washed."

Gold is relatively scarce in the earth, but it occurs in many different kinds of rocks and in many different geological environments. Though scarce, gold is concentrated by geologic processes to form commercial deposits of two principal types: lode (primary) deposits and placer (secondary) deposits.

Lode deposits are the targets for the "hardrock" prospector seeking gold at the site of its deposition from mineralizing solutions. Geologists have proposed various hypotheses to explain the source of solutions from which mineral constituents are precipitated in lode deposits.

ONE WIDELY ACCEPTED HYPOTHESIS proposes that many gold deposits, especially those found in volcanic and sedimentary rocks, formed from circulating ground waters driven by heat from bodies of magma (molten rock) intruded into the Earth's crust within about 2 to 5 miles of the surface.

Active geothermal systems, which are exploited in parts of the United States for natural hot water and steam, provide a modern analog for these gold-depositing systems. Most of the water in geothermal systems originates as rainfall, which moves downward through fractures and permeable beds in cooler parts of the crust and is drawn laterally into areas heated by magma, where it is driven upward through fractures. As the water is heated, it dissolves metals from the surrounding rocks. When the heated waters reach cooler rocks at shallower depths, metallic minerals precipitate to form veins or blanket-like ore bodies.

A SECOND HYPOTHESIS suggests that gold-bearing solutions may be expelled from magma as it cools, precipitating ore materials as they move into cooler surrounding rocks. This hypothesis is applied particularly to gold deposits located in or near masses of granite rock, which represent solidified magma.

A THIRD HYPOTHESIS is applied mainly to gold-bearing veins in metamorphic rocks that occur in mountain belts at continental margins. In the mountain-building process, sedimentary and volcanic rocks may be deeply buried or thrust under the edge of the continent, where they are subjected to high temperatures and pressures resulting in chemical reactions that change the rocks to new mineral assemblages (metamorphism).

This hypothesis suggests that water is expelled from the rocks and migrates upwards, precipitating ore materials as pressures and temperatures decrease. The ore metals are thought to originate from the rocks undergoing active metamorphism.

The primary concerns of the prospector or miner interested in a lode deposit of gold are to determine the average gold content (tenor) per ton of mineralized rock and the size of the deposit. From these data, estimates can be made of the deposit's value.

One of the most commonly used methods for determining the gold and silver content of mineralized rocks is the fire assay. The results are reported as troy ounces of gold or silver or both per short avoirdupois ton of ore or as grams per metric ton of ore.

Placer deposits represent concentrations of gold derived from lode deposits by erosion, disintegration, or decomposition of the enclosing rock, and subsequent concentration by gravity.

Gold is extremely resistant to weathering and, when freed from enclosing rocks, is carried downstream as metallic particles consisting of "dust," flakes, grains, or nuggets. Gold particles in stream deposits are often concentrated on or near bedrock, because they move downward during high-water periods when the entire bed load of sand, gravel, and boulders is agitated and is moving downstream.

Fine gold particles collect in depressions or in pockets in sand and gravel bars where the stream current slackens. Concentrations of gold in gravel are called "pay streaks."

In gold-bearing country, prospectors look for gold where coarse sands and gravel have accumulated and where "black sands" have concentrated and settled with the gold. Magnetite is the most common mineral in black sands, but other heavy minerals such as cassiterite, monazite, ilmenite, chromite, platinum-group metals, and some gem stones may be present.

Placer deposits have formed in the same manner throughout the Earth's history. The processes of weathering and erosion create surface placer deposits that may be buried under rock debris. Although these "fossil" placers are subsequently cemented into hard rocks, the shape and characteristics of old river channels are still recognizable.

The content of recoverable free gold in placer deposits is determined by the free gold assay method, which involves amalgamation of gold-bearing concentrate collected by dredging, hydraulic mining, or other placer mining operations.

In the period when the price of gold was fixed, the common practice was to report assay results as the value of gold (in cents or dollars) contained in a cubic yard of material. Now results are reported as grams per cubic yard or grams per cubic meter.

Through laboratory research, the U.S. Geological Survey has developed new methods for determining the gold content of rocks and soils of the Earth's crust. These methods, which detect and measure the amounts of other elements as well as gold, include atomic absorption spectrometry, neutron activation, and inductively coupled plasma-atomic emission on spectrometry. These methods enable rapid and extremely sensitive analyses to be made of large numbers of samples.

For more on Gold see http:/pubs.usgs.gov/gip/prospect1/goldgip.html.

Joseph K. Miller, Sr. is the Webmaster for the online newsmagazine ABOUT COLORADO on Colorado-Mall, "The definitive Web site on Colorado," with 14 major sections on Colorado, its people, and its natural environs. Here's their mission: "We want to make a difference as well as a living. We've discovered it is wonderful to feel good about ourselves, and the world around us. We want to make the world a healthier emotional place--one person at a time." Check out the extensive and informative Web site at http://www.Colorado-Mall.com.

Back Top Home

© 1999 Gold Prospectors of the Rockies